文章目录
0 前言
1 理论基础
1.1 书籍推荐
1.2 SfM概述
2 动手实践
2.1 增量式SfM复现总结
2.2 部分复现结果
2.3 遇到问题与解决
3 后续学习
3.1 前沿论文阅读笔记
3.2 Colmap使用问题
3.3 三维旋转
3.4 场景对齐
0 前言
一转眼,研究生生活已经过去两年了。开始接触SfM也是两年前的事了,至于缘由,谈不上为啥,一开始自己并没有明确喜欢的方向。现在回过头来看,我没有后悔学它,SfM可以称得上自己比较喜欢的一个技术类型了。不过SfM是一个已经有几十年研究历史的技术了,所以目前的话,想从传统流程上入手去进行改进的空间比较小也比较难。 SfM全称Structure from Motion,译为运动恢复结构,是三维重建pipeline的一部分,又称稀疏重建,在摄影测量领域则称为空三(空中三角测量)。SfM的任务是,给定一系列具有一定重叠度的图像,去同时估计出拍摄每张图像时相机的位姿(位置t和姿态R)和被拍摄物体或场景的稀疏点云。
1 理论基础
1.1 书籍推荐
初次接触SfM,我先看了两本书,一本是《视觉SLAM十四讲》,另一本是《计算机视觉中的多视图几何》。需要特别说明的一点是,SfM与SLAM(Simultaneous Localization and Mapping,即时定位与地图构建)在很多步骤上是类似的。区别在于,SfM不要求实时性,对重建场景的精度要求